Digital Circuits ECS 371

Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 13

ECS371.PRAPUN.COM

Office Hours: BKD 3601-7 Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30

1-bit Adder: Half Adder

- The basic difference between a **full-adder** and a **half-adder** is that the full-adder accepts an input carry.
- Half-Adder:

 $\Sigma = A \oplus B$ $C_{out} = AB$

1-bit Adder: Full-Adder

• We will construct a full adder by first adding A and B using a half-adder.

• Then, we use a second half-adder to add C_{in} to the result of the first half-adder.

The Output Carry of Full Adder

$C_{out} = AB + BC_{in} + AC_{in}$ This is fro	m K-m
$= AB + (A + B)C_{in}$	
$= AB + (A \oplus B + AB)C_{in}$	
$= AB + (A \oplus B)C_{in} + ABC_{in}$	INDI
$= AB + (A \oplus B)C_{in}$	A
$= C_1 + S_1 C_{in} = C_1 + C_2$	0 0

Multiple-bit Addition

• When one (multiple-bit) binary number is added to another, each column generates a sum bit and a 1 or 0 carry bit to the next column to the left.

- To add binary numbers with more than one bit, we must use additional full-adders.
 - For 2-bit numbers, two adders are needed;
 - for 4-bit numbers, four adders are used;
 - and so on.

 Example: Add the binary numbers 0111 and 1101 and show the equivalent decimal addition.
 The carry output of each

14

15

16

17

Parallel Adder

- Two categories (based on the way in which internal carries from stage to stage are handled)
 - 1. Ripple carry (The adder we have studied is a ripple-carry adder.)
 - 2. Look-ahead carry
- Externally, both types of adders are the same in terms of inputs and outputs.
- The difference is the **speed** at which they can add numbers.
 - The look-ahead carry adder is much faster than the ripple-carry adder.
- The speed with which an addition can be performed is limited by the time required for the carries to propagate, or ripple, through all the stages of a parallel adder.

Ripple Carry Adder

- A **ripple carry adder** is one in which the carry output of each full-adder is connected to the carry input of the next higher-order stage (a stage is one full-adder).
- Practical consideration: Real devices/gates have propagation time.
- The sum and the output carry of any stage cannot be produced until the input carry occurs.
- This causes a time delay in the addition process

Look-Ahead Carry Adder

- Speedup the addition process by eliminating ripple carry delay.
- Anticipate the output carry of each stage.

74x283: 4-bit Parallel Adder

22

Adder Expansion

(a) Cascading of two 4-bit adders to form an 8-bit adder

(b) Cascading of four 4-bit adders to form a 16-bit adder

Arithmetic Operations with Signed Numbers

- Using the signed number notation with negative numbers in 2's complement form simplifies addition and subtraction of signed numbers.
- Rules for addition: Add the two signed numbers (as if they are unsigned number). Discard any final carries. The result is in signed form.

Examples:

$$+ \begin{array}{c} 00011110 = +30 \\ 00001111 = +15 \\ 00101101 = +45 \end{array}$$

$$+ \begin{array}{c} 00001110 = +14 \\ 11101111 = -17 \\ 111111000 = -8 \\ 11111000 = -8 \\ 111110111 = -9 \end{array}$$

$$Discard$$

$$carry$$

Error (Overflow)

- Note that if the number of bits required for the answer is exceeded, error will occur. This occurs only if both numbers have the same sign.
- The error will be indicated by an incorrect sign bit.
- Some textbooks use the word "overflow" to denote this error.

Subtraction

• Rules for **subtraction**: 2's complement the subtrahend and add the numbers. Discard any final carries. The result is in signed form.

Example: Repeat the examples done previously, but subtract:

2's complement subtrahend and add:

Comparator

• A comparator compares two quantities and indicates whether or not they are equal.

(a) Basic magnitude comparator

(b) Example: *A* is less than B (2 < 5) as indicated by the HIGH output (A < B)

74x85: 4-bit Magnitude Comparator

Encoder

In general, the encoder converts information, such as a decimal number or an alphabetic character, into some coded form.

BCD

- Binary coded decimal (BCD) is a weighted code that is commonly used in digital systems when it is necessary to show decimal numbers such as in clock displays.
- Express each of the decimal digits with a binary code.

Decimal	Binary	BCD
0	0000	0000
1	0001	0001
2	0010	0010
3	0011	0011
4	0100	0100
5	0101	0101
6	0110	0110
7	0111	0111
8	1000	1000
9	1001	1001
10	1010	00010000
11	1011	00010001
12	1100	00010010
13	1101	00010011
14	1110	00010100
15	1111	00010101

Decimal-to-BCD Encoder

The decimal-to-BCD is an encoder with an input for each of the ten decimal digits and four outputs that represent the BCD code for the active digit.

31

Example

- Q: Show how the decimal-to-BCD encoder converts the decimal number 3 into a BCD 0011.
- A: The top two OR gates have ones as indicated with the red lines. Thus the output is 0011.

Programmable Logic Devices

- There are two broad categories of digital ICs.
 - >1. Fixed-function logic
 - 2. Programmable logic

-We've already talked about many of these

PLD (Programmable Logic Device)

- Historically, the first PLDs were programmable logic arrays (PLAs)
- A PLA is a combinational, two-level AND-OR device that can be programmed to realize any SOP logic expression.
 - Hence, it can also be used to implement minimal sum.
- Most PLDs also have a programmable inverter/buffer at the output of the AND-OR array.
 - Hence, it can also be used to implemented POS expression and minimal product.

Programmable link in PLDs

(a) Unprogrammed

(b) Programmed

ECS371 Exam

- NOT to torture you.
- It's an opportunity for you to demonstrate what you have learned from this course.
- Aim for partial credit! If you know something, write that down.

Some Important Corrections

- These typos in the notes have already been corrected in class.
- However, for those who skipped class, here are some important ones:
 - Distributive law:
 - A+BC = (A+B)(A+C)
 - A(B+C) = AB+AC
 - Caution: AB + CD = (AB+C)(AB+D) = (A+CD)(B+CD)

